News Overview

Index  〉News overview page  〉Show item

New Study Sheds Light on Milky Way's Magnetic Fields

All-sky Faraday RM map of the Milky Way (top) as presented in Hutschenreuter+ 2020 compared to one of our computed maps (bottom) based on the cosmological galaxy simulation and a synthesized cluster population. We note that both maps show a comparable distribution of small-scale to large-scale features.

STRUC­TURES Scientists Reproduce Milky Way’s Magnetic Field Structure in Unprecedented Detail Using Galaxy Simulations.

Magnetic fields play a significant role in shaping the evolution of the interstellar medium and the process of star formation. In their new study published in Nature Astronomy, an international and interdisciplinary re­search team led by STRUC­TURES scientists from Comprehensive Project (CP) 1 have derived an unprecedented first-principles prediction of the Milky Way's magnetic field structure. The scientists utilized cosmological magneto-hydrodynamic simulations of the Milky Way's formation, augmented with a new star-cluster population-synthesis model and detailed radiative transfer calculations to simulate the Faraday rotation measure – a primary observable signal encoding magnetic field topology and strength within polarized light. The results reproduce the observations of the Galaxy not only on large scales, but also replicate the intricate nuances of local individual star-forming clouds. Remarkably, the results emphasize the paramount influence of the Local Bubble — a region encompassing our Sun — whose rotation measure signal prevails across vast regions of the sky. This comprehensive analysis bridges a gap between observations and theo­re­ti­cal models, offering crucial insights into the Milky Way's origin and long-term evolution.

Weblinks:


STRUCTURES Contact

STRUCTURES Project Management Office
Philosophenweg 12 & Berliner Str. 47
D-69120 Heidelberg

+49 (0) 6221-54 9186

office@structures.uni-heidelberg.de

Connect With STRUCTURES on Social Media