Lectures

Long Courses

  • Topological aspects of fractional quantum Hall effect

    Martin Fraas (UC Davis)

    TBA

    Scroll to top

  • Approach to Equilibrium for translationally invariant lattice fermionic and quantum spin systems

    Vojkan Jaksic (Milano)

    TBA

    Scroll to top

  • Renormalization group and quantum transport

    Marcello Porta (SISSA)

    TBA

    Scroll to top

  • Facets of quantum glasses

    Simone Warzel (TUM)

    TBA

    Scroll to top

  • Many-body quantum systems: mean-field regime and beyond

    Chiara Saffirio (U Basel & Freiburg)

    TBA

    Scroll to top

  • Quantum Information and Gravity

    Stefan Hollands (U Leipzig)

    These lectures provide an exposition to a circle of ideas at the interface between high energy physics and gravity that involve directly or indirectly ideas about entropy and quantum information. Emphasis is in particular on the connection to operator algebras. My exposition will be informal for the most part, assuming a knowledge of the standard formalism of quantum theory, basic quantum field theory, and basic notions related to entropy as would be taught in a standard course on statistical physics, but no prior knowledge of operator algebra theory. My aim is to introduce some methods and notions from operator algebras that can be useful also for someone with only a casual interest in the technicalities of the subject. In particular, I want to highlight recent advances related to Bekenstein-type bounds, the quantum null energy condition, and modular theory of von Neumann algebras.

    Scroll to top

Supported by:

  • STRUCTURES Cluster of Excellence Heidelberg
  • ERC Match
  • LYSM
  • Journal of Mathematical Physics
  • Annales Henri Poincare
  • QuantAlps